today:
homework | due (5.1.14,5.2.6,5.2.24, 5.3.29, 5.3.54, 5.4.26)
§ 5.6 - logarithms
§ 6.1 - area between curves

thursday:

review for midterm (come with questions)

friday:
mslc: webwork 2 workshop @ 11:30, 12:30, 1:30, 2:30, 3:30 in SE 040
webwork 2 due @ 11:55 pm

sunday:

mslc: midterm review 7:30 pm - 9:18 pm in HI 131

tuesday:
midterm: 5.1 - 5.6, 6.1
homework 2 due (5.5.36,5.5.74, 5.6.4, 5.Review.38, 6.1.32, 6.1.48)

last time...

we introduced u substitution as a tool to help

us find antiderivatives. It works by helping us
recognize the result of a chain rule problem.

when done wisely, our u will be the inside
function in the antiderivative.




we could also have simplified
before differentiating by using
trig relations.

tanlarcsin x)=x/sqrt(1-x"2)

°
I ast tl I I I e coe seclarcsin x)=1/sqrt(1-x"2)

Ask if there are u-substitution
questions.

when done wisely, our u will be the inside
function in the antiderivative.

example:
d 2 '
T (tan (arcsinz)) = Sec\/(lar_i;zl ?)

to integrate the right-hand side, we should
choose u = arcsin x, which happens to be the
inside function of the composition on the left.

exploit symmetry

A function f is said to be even if f(-x) = f(z)

Examples of even functions include:

CIZ‘Q

even functions are
sywmwetric across the y-

COS(:C) axis.
sin? ()

sin (1’2) Z




f(z) =4+100 (z (22 — 1/4) (22 = 1))” (2% — 4)
exploit symmetry

f() = 4+100 (z (22 — 1/4) (22 = 1))" (2% — 4)
exploit symmetry




exploit symmetry

A function f is said to be odd if f(-x) = - f(x)

Examples of odd functions include:

exploit symmetry
£ (@) = sin(x)

10+

—10l




exploit symmetry
f(x) = sin(x)

1.0}

theorem

Note:

functions can be even,
odd, or neither.

Let a > O be a real number
Let f be a function.

Then

If fis even, /_a f(x)dz = 2/0a f(x)dx

If fis odd, /a f(z)dz = 0




exploit symmetry

with creativity, we can use the symmetry rules
even if our function is neither even nor odd.

example:

3
/ (332 + sin x?’) dx

-3

integral = 18

what is In z?

vsual definition is that In
is the inverse of exp, but
that just shifts the
question to what is e?




why is —e

2

€ ¢

Problew: thereis no clue
reason why this should
be true if we just think
of e as “some number”

In fact, why are the laws
of exponents true?

logarithms

we define In x :=
1

d
—lenm—l—C’
T

"t

t

Note that In x is only
defined for x>0. Why?
Because the limit of the
Reimann sum would not
exist if we cross x=0,
since 1/0 is undefined.

This is why there’s an
absolute value in the
indefinite integral.

Points will be deducted if
the antiderivative is
written w/o the
absolute valuve.




logarithms

all the norwal properties

of In and exp follow from
* dt these definitions

we deﬁne h”l €Tr .= / For example, [n 1 = 0,

t since it represents no
1 area

note that 1/x > 0, so as x increases, In x
increases. Since In 2 is a monotonic function,

it is one-to-one, and hence has an inverse. We
call this inverse exp .

theorem

let z, y > O be real numbers
let r be a rational number.

th en: The first two are proved

in the book, so | will
prove the third.

In(zy) =Inx +Iny
In(x/y) =Inz —Iny

In(z")=rlnz




theorem

In(z")=rlnz

proof:
d r—1
e (In(z") —rlnz) = ra;r — g =0

thusln (") — r Inx = ¢ for some constant c.
plugging in =1, we find c=0, proving the claim.

theorem

d
—exXpr = expx

dx




theorem

d of Iny not because of
sowe rule without proof

— eXp €Tr = eXp €T from 151, but from the

definition of In and the

d i first fundamental

theorew of calculus

proof:

let y = expx.
then Iny = In (expx) = .
1d
differentiating: — il 1,
y dx
dy

SO — =y = expcr.
A Y b

theorem . ..

the number such that the
natural log of eiis 1.

define e := exp(1). then e = exp(x).




theorem

define e := exp(1). then e* = exp(z).

proof:

In(e*)=xlne==x

A technical point: the
theorewm about In putting
exponents in front was
only for rational
nuwmbers, not real
numbers. Thus we define
¢'x := explx) when x is
irrational.

the result follows immediately by taking exp

(the inverse of In) of both sides.

theorem

Prove by letting f(x)=In x.
Then f'(x)=1/x, so f'(1)=1.
Also compute derivative
via definition, set equal,
take exp of both sides.

Proof in book, p429, so
omitted from notes.

e = lim (1 +x)1/$

xr—0




theorem

let z, y be real numbers
let » be a rational number.

then:
r+y _ T
e?TY =% eY
€T As before, the last
€ statement can be
e r—y __ extended to apply tor
- real.
ey
The book proves the first
P one; | prove the third.
X X
(e") =e y

(633)7“ — erx

proof:
In((e®))=rn(e®)=rxlne=rx

the result follows by taking exp of both sides.




theorem

let  be a real number,let a, b > 0.
we define ¢* ;= erna

then:

T Y P':ove e;h.es_e by ifn\(oking
a a the definition of a'x and

using the properties of
Xr— x
a*" Y =a"/a¥

ex.
(aa:)y — aa:y

S
+
<

|

(ab)” = a® b"
ia‘” =a” Ina
de

theorem

let z be a real number,leta > 0,a # 1.
we define log, x to be the inverse of a*.

then:
The first follows since if
y=log_a x, then a’y=x.
111 X Thusylna=Inx, so
1 0O g T = y=ln(x)/In(a).
a
The second follows
ln a immediately from the
first.
— (log, x) = ——
dx z Ina




area between curves

example: Find the area of the region
bounded by the line x=0 and the curves

y=cos(x) and y=sin(x).

area between curves

example: Find the area of the region
bounded by the line x=0 and the curves
y=cos(x) and y=sin(x).

step one:
draw a picture

we are looking for :
the area of the ot
blue shaded region

10+
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area between curves

example: Find the area of the region
bounded by the line x=0 and the curves

y=cos(x) and y=sin(x).

step two:
locate
intersections by

setting the
functions equal to
each other

I / 4
el since sin (g) = cos (

o e NG
0.5 ™ 10 1.5

1)

area between curves

example: Find the area of the region
bounded by the line x=0 and the curves

y=cos(x) and y=sin(x).

step three:
area between the
curves is area

/4 /4
area :/ cosx dx —/ sinx dz
0 0

w/4
= / (cosz —sinzx) dz
0

under top minus
area under
bottom curve

—05[

10+




area between curves

suppose f = g on [a, b. Then the area
between f and g on the interval is

We find area by intearating
the height along the base. In

b
6.2, we'll find volume by
( f (:L') — g (Qj) ) d T integrating cross-sectional
area along the 3rd dimension.
a

If sometimes f = g and sometimes g = f,
then you must find the areas of each piece
separately and then combine.

7

It is sometimes useful to integrate with
respect to y instead.

Problem 6.1.3 is a good example of when
you would integrate with respect toy.

next time

® review 5.1 - 5.6, 6.1
® attempt “webwork midterm | review”
® come with questions

H radical pi (undergrad math
. We bwo rl( 2 d u e O n frl day club) has a mafh/dunqeong-

and-dragons (?) themed talk
on Wednesday at 5 in the
undergrad math lounge (go
down the stairs in the math
building and it’ll be on the
lef1). Free pizza.




